W. J. Ng Æ S. Ramakrishna
Abstract
The fabrication of a composite electrospun
fiber membrane with sorptive characteristics intended for
removal of heavy metals was investigated. The electrospun
fiber membrane was impregnated with nano-boehmite
particles. The latter had been selected to increase surface
area of the active component. Cd (II) was chosen as the
challenge bivalent cation. The sorption capacity of the
nano-boehmite was studied as a function of pH and time.
Electrospinning was used to prepare the composite submicron
fiber membrane impregnated with boehmite
nanoparticles. The later was blended with the polymer to
produce a homogenous mixture before electrospinning.
Two polymers, the hydrophobic/PCL/and hydrophilic/
Nylon-6/, were chosen to serve as the support for the
boehmite. The nanoparticles and resulting composite
membranes were characterized using SEM, TEM, and
XRD techniques. XRD data confirmed the presence of
nano-boehmite particles in the nanofibers membrane. The
membranes so prepared were challenged with aqueous
solutions of Cd in batch isotherm tests. Atomic absorption
spectroscopy results show sorption of Cd (II) by boehmite
impregnated electospun membrane was possible and a
capacity of 0.20 mg/g was achieved.
fiber membrane with sorptive characteristics intended for
removal of heavy metals was investigated. The electrospun
fiber membrane was impregnated with nano-boehmite
particles. The latter had been selected to increase surface
area of the active component. Cd (II) was chosen as the
challenge bivalent cation. The sorption capacity of the
nano-boehmite was studied as a function of pH and time.
Electrospinning was used to prepare the composite submicron
fiber membrane impregnated with boehmite
nanoparticles. The later was blended with the polymer to
produce a homogenous mixture before electrospinning.
Two polymers, the hydrophobic/PCL/and hydrophilic/
Nylon-6/, were chosen to serve as the support for the
boehmite. The nanoparticles and resulting composite
membranes were characterized using SEM, TEM, and
XRD techniques. XRD data confirmed the presence of
nano-boehmite particles in the nanofibers membrane. The
membranes so prepared were challenged with aqueous
solutions of Cd in batch isotherm tests. Atomic absorption
spectroscopy results show sorption of Cd (II) by boehmite
impregnated electospun membrane was possible and a
capacity of 0.20 mg/g was achieved.
Reference:
Garudadhwaj Hota Email: garud31@yahoo.com Email: garud@nitrkl.ac.in |
References
http://www.springerlink.com/content/4u5m58862368u14v/fulltext.pdf
No comments:
Post a Comment